Contents of drawing

Load-bearing sheet

Drawings - list of contents (page 1/2)

<table>
<thead>
<tr>
<th>Drawing nr.</th>
<th>Content of drawing (load-bearing sheets)</th>
<th>Date</th>
<th>Rev. date</th>
</tr>
</thead>
<tbody>
<tr>
<td>T45-30L-905_V</td>
<td>Load-bearing sheet T45-30L-905, Technical dwg, Section - Center line</td>
<td>16.7.2007</td>
<td>7.4.2011</td>
</tr>
<tr>
<td>T55-53L-976_Z</td>
<td>Load-bearing sheet T55-53L-976, Technical dwg, Section - Center line</td>
<td>16.7.2007</td>
<td>7.4.2011</td>
</tr>
<tr>
<td>T70-57L-846_V</td>
<td>Load-bearing sheet T70-57L-846, Technical dwg, Section - Center line</td>
<td>16.7.2007</td>
<td>7.4.2011</td>
</tr>
<tr>
<td>T70-57L-1058_V</td>
<td>Load-bearing sheet T70-57L-1058, Technical dwg, Section - Center line</td>
<td>16.7.2007</td>
<td>7.4.2011</td>
</tr>
<tr>
<td>IN 01</td>
<td>Load-bearing sheet - Insulated roof, Erection - General view</td>
<td>18.10.2005</td>
<td></td>
</tr>
<tr>
<td>IN 02</td>
<td>Load-bearing sheet - Insulated roof, Installation - Fastening to support</td>
<td>18.10.2005</td>
<td>7.4.2011</td>
</tr>
<tr>
<td>IN 03</td>
<td>Load-bearing sheet - Insulated roof, Installation - Fastening to support</td>
<td>18.10.2005</td>
<td>7.4.2011</td>
</tr>
<tr>
<td>IN 05</td>
<td>Load-bearing sheet - Insulated roof, Installation - Static scheme</td>
<td>18.10.2005</td>
<td>7.4.2011</td>
</tr>
<tr>
<td>IN 06</td>
<td>Load-bearing sheet - Insulated roof, Installation - Static scheme</td>
<td>18.10.2005</td>
<td>7.4.2011</td>
</tr>
<tr>
<td>IN 07</td>
<td>Load-bearing sheet - Insulated roof, Installation - Simple overlap</td>
<td>7.4.2011</td>
<td>7.4.2011</td>
</tr>
<tr>
<td>IN 08</td>
<td>Load-bearing sheet - Insulated roof, Installation - Simple overlap</td>
<td>7.4.2011</td>
<td>7.4.2011</td>
</tr>
<tr>
<td>IN 15</td>
<td>Load-bearing sheet - Structural detail, Fastening to prestressed concrete structures</td>
<td>12.09.2005</td>
<td>7.4.2011</td>
</tr>
<tr>
<td>IN 16</td>
<td>Load-bearing sheet - Structural detail, Fastening to prestressed concrete structures</td>
<td>12.09.2005</td>
<td>7.4.2011</td>
</tr>
<tr>
<td>IN 21</td>
<td>Load-bearing sheet - Structural detail, Double pitched roofs or similar - 1</td>
<td>15.12.2000</td>
<td>21.7.2011</td>
</tr>
<tr>
<td>IN 23</td>
<td>Load-bearing sheet - Structural detail, Double pitched roofs or similar - 3</td>
<td>15.12.2000</td>
<td>21.7.2011</td>
</tr>
<tr>
<td>IN 24</td>
<td>Load-bearing sheet - Structural detail, Double pitched roofs or similar - 4</td>
<td>15.12.2000</td>
<td>21.7.2011</td>
</tr>
<tr>
<td>Drawing nr.</td>
<td>Content of drawing (load-bearing sheets)</td>
<td>Date</td>
<td>Rev. date</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------------------------------------------------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
Load bearing sheet T130M-75L-930
Trapezoidal profile
Technical drawing - section

Date: 16.10.2012
Drawn by: Ruukki
Scale: 1:5

Contents of drawing:
TECDA4T130M
T130M-75L-930 Vi00

Copyright © Rautaruukki Oyj. All rights reserved.
Section A - A

Section X - X

Attention:
L - span length
* - fasteners installed according to structural design
** - side overlapping according to structural design

1. Ruukki load-bearing sheet
2. Primary structure according to structural design
3. Fastener in every flange against support
4. Fastener on sidelaps c/c max 500 mm
Sections Y-Y, Z-Z drawing no IN 02, IN 03
Detail A drawing no IN 04

Copyright © Rautaruukki Corporation.
Section Y - Y

Attention:
L - span length
* - fasteners installed according to structural design
** - side overlapping according to structural design

1. Ruukki load-bearing sheet
2. Primary structure according to structural design
3. Fastener in every flange against support
4. Fastener on sidelaos c/c max 500 mm
Section Z - Z

Attention:
L - span length
* - fasteners installed according to structural design
** - side overlapping according to structural design
1. Ruukki load-bearing sheet
2. Primary structure according to structural design
3. Fastener in every flange against support
4. Fastener on sidetaps c/c max 500 mm

Copyright © Rautaruukki Corporation.
Detail A
Standard cross endlap of load-bearing sheets - insulated roof *

Attention:
* - length and type of endlap according to structural design

1. Ruukki load-bearing sheet
2. Primary structure according to structural design
3. Fastener in every flange against support
4. Fastener on sidelaps c/c max 500 mm

Section Z-Z drawing no IN 03

Copyright © Rautaruukki Corporation.
Standard static scheme - Insulated roof

1-span system

2-span system

Continuous structure - simple overlap joint

Continuous structure - double overlap joint

Attention:
* - flange and fixing number according to structural design

1. Ruukki load-bearing sheet
2. Fastener on sidelaps c/c max 500 mm

Copyright © Rautaruukki Corporation.
Standard static scheme - Insulated roof

1-span system

Continuous structure - simple overlap joint

Continuous structure - double overlap joint

Attention:
* - side overlapping and fastener number according to structural design
** - thicker sheet close to support

1. Ruukki load-bearing sheet
2. Fastener on sidelaps c/c max 500 mm

Copyright © Rautaruukki Corporation.
Standard simple overlap of load-bearing sheets - Insulated roof

Attention:
- L - span length
- * - length and type of overlap according to structural design
- ** - number of fasteners according to structural design

1. Ruukki load-bearing sheet
2. Primary structure according to structural design
3. Fastener in every flange against support
4. Fastener on sidelaps c/c max 500 mm
5. Fastener in the web
Standard simple overlap of load-bearing sheets - Insulated roof

Attention:
L - span length
* - length and type of overlap according to structural design
** - number of fasteners according to structural design

1. Ruukki load-bearing sheet
2. Primary structure according to structural design
3. Fastener in every flange against support
4. Fastener on sidelaps c/c max 500 mm
5. Fastener in the web
1. Ruukki load-bearing sheet
2. Supporting piece 320mm length - Ruukki profile
3. Primary structure according to structural design

Copyright © Rautaruukki Corporation.
Section B - B

1. Ruukki load-bearing sheet
2. Supporting piece 320mm length - Ruukki profile
3. Primary structure according to structural design
4. Fastener in every flange against support

Section A - A
Static scheme

1.

2.

3.

4.

Attention:

X1 = 0.125 x L
X2 = 0.146 x L
X3 = 0.204 x L
X4 = 0.157 x L
L - span length

Detail A drawing no IN 12
Standard endlap of load-bearing sheets - Gerber system - insulated roof

Detail A

Section X - X

Attention:

* - length, type of endlap, number of screws according to structural design

1. Ruukki load-bearing sheet
2. Primary structure according to structural design
3. Fastener in every flange against support
4. Fastener
5. Fastener for estetical reasons

Section Y-Y drawing no IN 02

Copyright © Rautanukki Corporation.
### Fastening of load-bearing sheet to concrete

**Attention:**

1. Fastening directly to concrete must be avoided.
2. E.g. 5 mm thick sealing strip is installed between load-bearing sheet and concrete.
3. Fastening of sheet can be done with e.g. spike metallic anchor + sealing.
4. The quality and number of fasteners according to structural designer specification.

---

**Contents of drawing**

*Load-bearing sheets - structural detail*

*Fastening to concrete*

---

<table>
<thead>
<tr>
<th>Drawn by</th>
<th>Rev. date</th>
<th>Work nr.</th>
<th>Dwg. nr.</th>
<th>Rev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruukki</td>
<td>12.09.2005</td>
<td>IN00A4013</td>
<td>IN 13</td>
<td>01</td>
</tr>
</tbody>
</table>

**Scale:** 1:5

**Building:**

---

<table>
<thead>
<tr>
<th>File nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN00A4013</td>
</tr>
</tbody>
</table>
Fastening of load-bearing sheet to concrete/wood

Attention:
1. Wood is installed onto concrete structure, fastening e.g. with wedge anchors
2. Load-bearing sheet is fastened to wood e.g. with self-drilling wood screws
3. The quality and number of fasteners according to structural designer specification
**Fastening of load-bearing sheet to prestressed concrete structures**

- Steel profile, non continuous
- Rectangular hollow section or cold worked U-steel

---

**Attention:**

1. Steel profile is installed onto concrete structure, fastening to fastening plates in the prestressed concrete structure.
2. Load-bearing sheet is fastened to steel profile with e.g. self-drilling screws.
3. The quality and number of fasteners according to structural designer specification.

Copyright © Rautaruukki Corporation.
Fastening of load-bearing sheet to prestressed concrete structures

Attention:
1. Wood is installed onto concrete structure, fastening to steel plates welded to fastening plates in the prestressed concrete structure with coach screws
2. Load-bearing sheet is fastened to wood with e.g. self-drilling wood screws
3. The quality and number of fasteners according to structural designer specification
Standard sidelap of load-bearing sheets - Insulated roof

Profile T45

Profile T55

Profile T60

Profile T70 - 5-flanges

Profile T70 - 4-flanges

* - flange and fastener number according to structural design

1. Ruukki load-bearing sheet
2. Fastener on sidelaps c/c max 500 mm

Copyright © Ruukki Corporation.
Standard sidelap of load bearing sheets - Insulated roof

Profile T85

Profile T130

Profile 153 A

* - flange and fastener number according to structural design

1. Ruukki load-bearing sheet
2. Fastener on sidelaps c/c max 500 mm
STRUCTURAL LAYERS

1. WATER INSULATION
2. THERMAL INSULATION, SUITED FOR WATER INSULATION’S BASE
3. THERMAL INSULATION
4. VAPOUR BARRIER, NET REINFORCED ALUMINIUM COATED PLASTIC, OVERLAPPING 200 mm + TAPING
5. THERMAL INSULATION, LOAD BEARING INSULATION, THAT SUPPORTS VAPOUR BARRIER
6. LOAD-BEARING PROFILED SHEET ACCORDING TO CONSTRUCTION DRAWING
7. FIRE PROTECTION, WHEN NECESSARY

INSTRUCTIONS

Water insulation is fastened mechanically through thermal insulation to support structure. If the used water insulation requires ventilation ducts in the thermal insulation, it has to be made sure that they are continuous. Replacement air is provided to the ventilation ducts at eaves and exhaust ventilation is arranged e.g. with inward relief valves according to construction drawing. Water insulation class in compliance with construction drawing. Counter inclinations ≥ 1:60.

Thickness of the thermal insulation layer is determined by the used insulation material so that the structure conforms to required U-value.

For acoustic purposes a load-bearing structure with acoustic perforation can be chosen. In which case it has to be made sure with a separate dust suppression cloth, that the load-bearing sheet's upper damping insulation is dustless.

Structure’s fire resistance time can be influenced with underneath covering. Structural designer determines the covering according to the required fire resistance time.

APPLICATIONS

Flat roofs with inclinations 1:20-1:40
STRUCTURAL LAYERS

1. PROTECTIVE GRAVEL, d= 8...20, >35 kg/m2
2. WATER INSULATION
3. THERMAL INSULATION
4. THERMAL INSULATION, SLOTTED
5. VAPOUR BARRIER, NET REINFORCED ALUMINIUM COATED PLASTIC, OVERLAPPING 200 mm + TAPING
6. THERMAL INSULATION, LOAD BEARING INSULATION, THAT SUPPORTS VAPOUR BARRIER
7. LOAD-BEARING PROFILED SHEET WITH ACOUSTIC PERFORATION ACCORDING TO CONSTRUCTION DRAWING

INSTRUCTIONS

Water insulation is fastened mechanically through thermal insulation to support structure. If the used water insulation requires ventilation ducts in the thermal insulation, it has to be made sure that they are continuous. Replacement air is provided to the ventilation ducts at eaves and exhaust ventilation is arranged e.g. with inward relief valves according to construction drawing. Water insulation class in compliance with construction drawing. Counter inclinations ≥ 1:60.

Thickness of the thermal insulation layer is determined by the used insulation material so that the structure conforms to required U-value.

For acoustic purposes a load-bearing structure with acoustic perforation can be chosen. In which case it has to be made sure with a separate dust suppression cloth, that the load-bearing sheet's upper damping insulation is dustless.

Structure's fire resistance time can be influenced with underneath covering. Structural designer determines the covering according to the required fire resistance time.

APPLICATIONS

Flat roofs with inclinations 1:20-1:40
**STRUCURAL LAYERS**

1. WATER INSULATION
2. THERMAL INSULATION
3. THERMAL INSULATION, SLOTTED
4. VAPOUR BARRIER, NET REINFORCED ALUMINIUM COATED PLASTIC, OVERLAPPING 200 mm + TAPING
5. THERMAL INSULATION, LOAD BEARING INSULATION, THAT SUPPORTS VAPOUR BARRIER
6. LOAD-BEARING PROFILED SHEET ACCORDING TO CONSTRUCTION DRAWING
7. FIRE PROTECTION, WHEN NECESSARY

**INSTRUCTIONS**

Water insulation is fastened mechanically through thermal insulation to support structure. If the used water insulation requires ventilation ducts in the thermal insulation, it has to be made sure that they are continous. Replacement air is provided to the ventilation ducts at eaves and exhaust ventilation is arranged e.g. with inward relief valves according to construction drawing. Water insulation class in compliance with construction drawing. Counter inclinations ≥ 1:60.

Thickness of the thermal insulation layer is determined by the used insulation material so that the structure conforms to required U-value.

For acoustic purposes a load-bearing structure with acoustic perforation can be chosen. In which case it has to be made sure with a separate dust suppression cloth, that the load-bearing sheet's upper damping insulation is dustless.

Structure's fire resistance time can be influenced with underneath covering. Structural designer determines the covering according to the required fire resistance time.

**APPLICATIONS**

Double pitched roofs or similar with inclinations ≥1:40

---

Copyright © Rautaruukki Corporation. Allowed only for designs with Ruukki’s products.
STRUCTURAL LAYERS

1. WATER INSULATION
2. THERMAL INSULATION
3. THERMAL INSULATION, SLOTTED
4. VAPOUR BARRIER, NET REINFORCED ALUMINIUM COATED PLASTIC, OVERLAPPING 200 mm + TAPING
5. THERMAL INSULATION, LOAD BEARING INSULATION, THAT SUPPORTS VAPOUR BARRIER
6. LOAD-BEARING SHEET WITH ACOUSTIC PERFORATION ACCORDING TO CONSTRUCTION DRAWING
7. SECONDARY STRUCTURE ACCORDING TO CONSTRUCTION DRAWING

INSTRUCTIONS

Water insulation is fastened mechanically through thermal insulation to support structure. If the used water insulation requires ventilation ducts in the thermal insulation, it has to be made sure that they are continous. Replacement air is provided to the ventilation ducts at eaves and exhaust ventilation is arranged e.g. with inward relief valves according to construction drawing. Water insulation class in compliance with construction drawing. Counter inclinations ≥ 1:60.

Thicknes of the thermal insulation layer is determined by the used insulation material so that the structure conforms to required U-value.

For acoustic purposes a load-bearing structure with acoustic perforation can be chosen. In which case it has to be made sure with a separate dust suppression cloth, that the load-bearing sheet's upper damping insulation is dustless.

Structure's fire resistance time can be influenced with underneath covering. Structural designer determines the covering according to the required fire resistance time.

APPLICATIONS

Shortening reverberation time
Double pitched roofs or similar with inclinations ≥1:40
STRUCTURAL LAYERS

1. WATER INSULATION
2. THERMAL INSULATION
3. THERMAL INSULATION, SLOTTED
4. VAPOUR BARRIER, NET REINFORCED ALUMINIUM COATED PLASTIC, OVERLAPPING 200 mm + TAPING
5. THERMAL INSULATION, LOAD BEARING INSULATION, THAT SUPPORTS VAPOUR BARRIER
6. LOAD-BEARING PROFILED SHEET WITH ACOUSTIC PERFORATION ACCORDING TO CONSTRUCTION DRAWING
7. SECONDARY STRUCTURE ACCORDING TO CONSTRUCTION DRAWING

INSTRUCTIONS

Water insulation is fastened mechanically through thermal insulation to support structure. If the used water insulation requires ventilation ducts in the thermal insulation, it has to be made sure that they are continuous. Replacement air is provided to the ventilation ducts at eaves and exhaust ventilation is arranged e.g. with inward relief valves according to construction drawing. Water insulation class in compliance with construction drawing. Counter inclinations ≥ 1:60.

Thickness of the thermal insulation layer is determined by the used insulation material so that the structure conforms to required U-value.

For acoustic purposes a load-bearing structure with acoustic perforation can be chosen. In which case it has to be made sure with a separate dust suppression cloth, that the load-bearing sheet’s upper damping insulation is dustless.

Structure’s fire resistance time can be influenced with underneath covering. Structural designer determines the covering according to the required fire resistance time.

APPLICATIONS

Shortening reverberation time
Double pitched roofs or similar with inclinations >1:40
STRUCTURAL LAYERS

1. WATER INSULATION
2. THERMAL INSULATION
3. THERMAL INSULATION, SLOTTED
4. VAPOUR BARRIER, NET REINFORCED ALUMINIUM COATED PLASTIC, OVERLAPPING 200 mm + TAPING
5. LOAD-BEARING PROFILED SHEET WITH ACOUSTIC PERFORATION ACCORDING TO CONSTRUCTION DRAWING, WOOL BACKFILL IN FLANGES

INSTRUCTIONS

Water insulation is fastened mechanically through thermal insulation to support structure. If the used water insulation requires ventilation ducts in the thermal insulation, it has to be made sure that they are continuous. Replacement air is provided to the ventilation ducts at eaves and exhaust ventilation is arranged e.g. with inward relief valves according to construction drawing. Water insulation class in compliance with construction drawing. Counter inclinations ≥ 1:60.

Thickness of the thermal insulation layer is determined by the used insulation material so that the structure conforms to required U-value.

For acoustic purposes a load-bearing structure with acoustic perforation can be chosen. In which case it has to be made sure with a separate dust suppression cloth, that the load-bearing sheet's upper damping insulation is dustless.

Structure's fire resistance time can be influenced with underneath covering. Structural designer determines the covering according to the required fire resistance time.

APPLICATIONS

Shortening reverberation time
Double pitched roofs or similar with inclinations ≥1:40

Copyright © Rautaruukki Corporation. Allowed only for designs with Ruukki’s products.
STRUCTURAL LAYERS

1. WATER INSULATION, PROFILED SHEET, ANTI-CONDENSATION COAT ON LOWER SURFACE
2. VENTILATING STEEL BATTEN
3. THERMAL INSULATION
4. THERMAL INSULATION
5. VAPOUR BARRIER, NET REINFORCED ALUMINIUM COATED PLASTIC, OVERLAPPING 200 mm + TAPING
6. LOAD-BEARING PROFILED SHEET ACCORDING TO CONSTRUCTION DRAWING
7. FIRE PROTECTION, WHEN NECESSARY

INSTRUCTIONS

Water insulation is fastened mechanically through thermal insulation to support structure. If the used water insulation requires ventilation ducts in the thermal insulation, it has to be made sure that they are continuous. Replacement air is provided to the ventilation ducts at eaves and exhaust ventilation is arranged e.g. with inward relief valves according to construction drawing. Water insulation class in compliance with construction drawing.

Thickness of the thermal insulation layer is determined by the used insulation material so that the structure conforms to required U-value.

For acoustic purposes a load-bearing structure with acoustic perforation can be chosen. In which case it has to be made sure with a separate dust suppression cloth, that the load-bearing sheet's upper damping insulation is dustless.

Structure's fire resistance time can be influenced with underneath covering. Structural designer determines the covering according to the required fire resistance time.

APPLICATIONS

Double pitched roofs or similar with inclinations ≥1:10
**STRUCTURAL LAYERS**

1. WATER INSULATION
2. WEATHERING PLYWOOD
3. LOAD-BEARING PROFILED SHEET ACCORDING TO CONSTRUCTION DRAWING, ANTI-CONDENSATION COATING ON THE SHEET’S LOWER SURFACE, WHEN NECESSARY
4. PURLIN STRUCTURE ACCORDING TO CONSTRUCTION DRAWING
5. LOAD-BEARING STEEL FRAME ACCORDING TO CONSTRUCTION DRAWING

**INSTRUCTIONS**

Water insulation class in compliance with construction drawing
Counter inclinations ≥1:60

**APPLICATIONS**

Warehouse roofs, inclinations ≥1:40
STRUCTURAL LAYERS

1. WATER INSULATION
2. WEATHERING PLYWOOD
3. LOAD-BEARING PROFILED SHEET ACCORDING TO CONSTRUCTION DRAWING, ANTI-CONDENSATION COATING ON THE SHEET'S LOWER SURFACE, WHEN NECESSARY
4. LOAD-BEARING STEEL FRAME ACCORDING TO CONSTRUCTION DRAWING

INSTRUCTIONS

Water insulation class in compliance with construction drawing
Counter inclinations ≥1:60

APPLICATIONS

Warehouse roofs, inclinations ≥1:40
STRUCTURAL LAYERS

1. WATER INSULATION
2. THERMAL INSULATION, SUITED FOR WATER INSULATION'S BASE
3. LOAD-BEARING PROFILES SHEET ACCORDING TO CONSTRUCTION DRAWING,
   ANTI-CONDENSATION COATING ON THE SHEET'S LOWER SURFACE,
   WHEN NECESSARY
4. PURLIN STRUCTURE ACCORDING TO CONSTRUCTION DRAWING
5. LOAD-BEARING STEEL STRUCTURE ACCORDING TO CONSTRUCTION DRAWING

INSTRUCTIONS

Water insulation is fastened mechanically through thermal insulation to support structure. If the used water insulation requires ventilation ducts in the thermal insulation, it has to be made sure that they are continuous. Replacement air is provided to the ventilation ducts at eaves and exhaust ventilation is arranged e.g. with inward relief valves according to construction drawing. Water insulation class in compliance with construction drawing. Counter inclinations ≥ 1:60.

Thickness of the thermal insulation layer is determined by the used insulation material so that the structure conforms to required U-value.

APPLICATIONS

Warehouse roofs, inclinations ≥1:40
**STRUCTURAL LAYERS**

1. WATER INSULATION  
2. THERMAL INSULATION, SUITED FOR WATER INSULATION'S BASE  
3. LOAD-BEARING PROFILED SHEET ACCORDING TO CONSTRUCTION DRAWING, ANTI-CONDENSATION COATING ON THE SHEET'S LOWER SURFACE, WHEN NECESSARY  
4. LOAD-BEARING STEEL STRUCTURE ACCORDING TO CONSTRUCTION DRAWING

**INSTRUCTIONS**

Water insulation is fastened mechanically through thermal insulation to support structure. If the used water insulation requires ventilation ducts in the thermal insulation, it has to be made sure that they are continuous. Replacement air is provided to the ventilation ducts at eaves and exhaust ventilation is arranged e.g. with inward relief valves according to construction drawing. Water insulation class in compliance with construction drawing. Counter inclinations ≥ 1:60.

Thickness of the thermal insulation layer is determined by the used insulation material so that the structure conforms to required U-value.

**APPLICATIONS**

Warehouse roofs, inclinations ≥1:40
STRUCTURAL LAYERS

1. WATER INSULATION, LOAD-BEARING PROFILED SHEET
   ACCORDING TO CONSTRUCTION DRAWING, ANTI-CONDENSATION
   COATING ON THE SHEET'S LOWER SURFACE, WHEN NECESSARY
2. PURLIN STRUCTURE ACCORDING TO CONSTRUCTION DRAWING
3. LOAD-BEARING STRUCTURE ACCORDING TO CONSTRUCTION DRAWING

APPLICATIONS

Canopy and warehouse roofs inclinations >1:10
1. RUUKKI SANDWICH PANEL, HORIZONTAL MOUNTING
2. EAVE FLASHING
3. PROTECTIVE FLASHING
4. STORM FLASHING
5. INSULATION SUPPORT FLASHING, T=0.6MM
6. FLAT STEEL FOR VAPOUR BARRIER FIXING, T=0.6MM
7. FASTENER
8. VAPOUR BARRIER
9. LOAD-BEARING PROFILED SHEET
10. THERMAL INSULATION
11. WATER INSULATION

SEE ALSO SANDWICH PANEL SPA DETAIL: SPA06-1E-FI
1. RUUKKI SANDWICH PANEL, HORIZONTAL MOUNTING
2. EAVE FLASHING
3. INSULATION SUPPORT FLASHING, T=0.6MM
4. FLAT STEEL FOR VAPOUR BARRIER FIXING, T=0.6MM
5. STORM FLASHING
6. WOOD
7. FASTENER
8. VAPOUR BARRIER
9. LOAD-BEARING PROFILED SHEET
10. THERMAL INSULATION
11. WATER INSULATION

SEE ALSO SANDWICH PANEL SPA DETAIL: SPA06-11E-FI
1. RUUKKI SANDWICH PANEL, HORIZONTAL MOUNTING
2. EAVE FLASHING
3. INSULATION SUPPORT FLASHING, T=0.6MM
4. FLAT STEEL FOR VAPOUR BARRIER FIXING, T=0.6MM
5. STORM FLASHING
6. FASTENER
7. VENTILATING STEEL BATTEN
8. VAPOUR BARRIER
9. LOAD-BEARING PROFILED SHEET
10. THERMAL INSULATION
11. WATER INSULATION, PROFILED SHEET

SEE ALSO SANDWICH PANEL SPA DETAIL: SPA06-9E-FI
1. RUUKKI SANDWICH PANEL, HORIZONTAL MOUNTING
2. VENTILATING STEEL BATTEN
3. INSULATION SUPPORT FLASHING, T=0.6MM
4. FLAT STEEL FOR VAPOUR BARRIER FIXING, T=0.6MM
5. EAVE FLASHING
6. VAPOUR BARRIER
7. FASTENER
8. LOAD-BEARING PROFILED SHEET
9. THERMAL INSULATION
10. WATER INSULATION, PROFILED SHEET

SEE ALSO SANDWICH PANEL SPA DETAIL: SPA06-10E-FI
1. RUUKKI SANDWICH PANEL, HORIZONTAL MOUNTING
2. EAVE FLASHING
3. INSULATION SUPPORT FLASHING, T=0.6MM
4. FLAT STEEL FOR VAPOUR BARRIER FIXING, T=0.6MM
5. FASTENER
6. VAPOUR BARRIER
7. LOAD-BEARING PROFILED SHEET
8. THERMAL INSULATION
9. WATER INSULATION, PROFILED SHEET

SEE ALSO SANDWICH PANEL SPA DETAIL: SPA06-12E-FI
STRUCTURAL LAYERS

1. SURFACE MATERIAL ACCORDING TO DESIGNER SPECIFICATION
2. TOPPING
3. REINFORCED CONCRETE SLAB ACCORDING TO CONSTRUCTION DRAWING
4. LOAD-BEARING PROFILED SHEET MOULD ACCORDING TO CONSTRUCTION DRAWING REINFORCEMENTS ACCORDING TO CONSTRUCTION DRAWING

APPLICATIONS

Concrete floors
STRUCTURAL LAYERS

1. SURFACE MATERIAL ACCORDING TO DESIGNER SPECIFICATION
2. BUILDING BOARD(S), FASTENING ACCORDING TO CONSTRUCTION DRAWING
3. LOAD-BEARING PROFILED SHEET ACCORDING TO CONSTRUCTION DRAWING
4. FIRE PROTECTION, WHEN NECESSARY
   CLADDING ACCORDING TO DESIGN

APPLICATIONS

Lightly stressed intermediate floors
### STRUCTURAL LAYERS

1. PROFILED SHEET ACCORDING TO CONSTRUCTION DRAWING
2. PURLIN STRUCTURE ACCORDING TO CONSTRUCTION DRAWING

### APPLICATIONS

Uninsulated walls
STRUCTURAL LAYERS

1  PROFILED SHEET ACCORDING TO CONSTRUCTION DRAWING
2  STEEL STRUCTURE ACCORDING TO CONSTRUCTION DRAWING

APPLICATIONS

Uninsulated walls
FASTENING OF ACOUSTIC INSULATION WOOL
ADHESIVE INSTALLATION

ACOUSTIC INSULATION WOOL IS GLUED TO PROFILED SHEET E.G. WITH ACOUSTIC GLUE.

IN OPEN JOINT INSTALLATION APPROX. 10 mm GAP IS LEFT BETWEEN SHEETS.

FASTENING OF ACOUSTIC INSULATION WOOL
BARREL RIDGE INSTALLATION

FASTENING OF BARREL RIDGE TO PROFILED SHEET
E.G. WITH HIDDEN RIVETS
FASTENING OF ACOUSTIC INSULATION WOOL
T-FLASING / SUSPENDED CEILING

BRACKETS ARE FASTENED FROM FLANGES' BOTTOM OR SIDE.

IF VAPOUR BARRIER IS USED DIRECTLY ON TOP OF PROFILED SHEET,
BRACKET SHALL NOT BE FASTENED TO FLANGE'S CROWN.
A FRAME AROUND THE OPENING IS MADE OF C- AND HAT PURLINS WHICH SUPPORTS HOLE’S EDGES.

STEEL SUPPORTS AND FASTENING SCREWS ACCORDING TO CONSTRUCTION DESIGNER SPECIFICATION.
SUPPORTING FROM ABOVE

PL10-150*L k 2000
L ACCORDING TO PROFILE

THREAD BAR ACCORDING TO SUPPORT SYSTEM
k 2000

DISTANCE BETWEEN SUPPORTS HAS TO BE CHECKED ACCORDING TO LOAD-BEARING SHEET AND STRUCTURE TO BE SUPPORTED.
SUPPORTS ARE TO BE INSTALLED BEFORE INSULATION AND VAPOUR BARRIER.
SUPPORTING FROM FLANGE

PL10-B*250 k 2000
B ACCORDING TO PROFILE

THREAD BAR ACCORDING TO SUPPORT SYSTEM k 2000

DISTANCE BETWEEN SUPPORTS HAS TO BE CHECKED ACCORDING TO LOAD-BEARING SHEET AND STRUCTURE TO BE SUPPORTED. SUPPORTS ARE TO BE INSTALLED BEFORE INSULATION AND VAPOUR BARRIER.